
Querying Databases of Trajectories of Differential

Equations: Data Structures for Trajectories

Robert Grossman*

University of Illinois at Chicago

June, 1989

‘This research is supported in part by NASA grant NAG2-513. Address: Depart-
ment of Mathematics, Statistics, and Computer Science, m/c 249, University of Illinois at
Chicago, Box 4348, Chicago, IL 60680, (312) 413-2164, U32964QUICVM.UIC.EDU.

I

Abst rac t

One approach to qualitative reasoning about dynamical systems is

to extract qualitative information by searching or making queries on

databases containing very large numbers of trajectories. The efficiency

of such queries depends crucially upon finding an appropriate data

structure for trajectories of dynamical systems.

Suppose that a large number of parameterized trajectories y of

a dynamical system evolving in RN are stored in a database. Let

17 c RN denote a parameterized path in Euclidean space, and let 1 1

denote a norm on the space of paths. In this paper, we define a data

structure to represent trajectories of dynamical systems and sketch an

algorithm which answers queries of the following form:

Query. Return the trajectory y from the database which minimizes

the norm

11’1 - 7.11.

c

. I

1 Introduction

1.1 Queries about Trajectories

Suppose that a large number of parameterized trajectories 7 of a dynamical

system evolving in RN are stored in a database. Let 17 C RN denote a

parameterized path in Euclidean space, and let 1 1 - 1 1 denote a norm on the

space of paths to be specified later. In this paper, we define a da ta struc-

ture to represent trajectories of dynamical systems and sketch algorithms to

answer queries of the following forms:

Query 1. Return the trajectory y from the database which minimizes the

norm

Query 2. Fix 6 > 0. Return all trajectories 7 from the database which

satisfy

1117 - 711 5 € *

Query 3. If 7 is a segment of trajectory stored in the database, return the

entire trajectory 7.

Efficient algorithms to answer these type of queries should prove useful

for a number of applications. As an example, consider the path-planning

problem for a robotic arm. Suppose that a large number of feasible tra-

n

I

jectories of the robotic arm have been stored in a database. Let 7 be the

desired path of the arm. It is not necessary that 77 be an actual feasible

path. Query 1 would return the feasible trajectory y of the arm which is

closest to the desired path 7.

An another example, assume the database contains trajectories not from

just one dynamical system, but from a parameterized family of dynamical

systems. Let y denote a trajectory which is a periodic orbit. Then Query 2

could be used to gain information about those dynamical systems which also

have a periodic orbit. In other words, queries such as these would be useful

in extracting qualitative information about dynamical systems.

As a final example, consider a database containing control trajectories

for an aircraft, and assume that auxiliary information is attached to each

control trajectory in the database. For example, those trajectories which

enter into an unstable control regime somewhere along their flight path

could be tagged. Let 77 denote a measured portion of the flight path of the

aircraft. Then Query 1 would return the nearest full control trajectory in

the database, which would include information about the stability of the

trajectory. In other words, the query could be used as part of a supervisory

control system.

A database supporting these types of queries on trajectories needs an

4

efficient means of storing, accessing, searching, and comparing trajectories.

In this paper, we describe a data structure for trajectories, a related family of

index functions for trajectories, and sketch algorithms to answer the queries

above. The work described in this paper is preliminary. For a more complete

analysis of the issues raised here, a complexity analysis of the algorithms,

and a discussion of implementation issues, see [9].

The da ta structure we describe is closely related to hashing methods for

curves that have been used in computer vision; see [13], [16], and (111. A

related means of extracting qualitative information from dynamical systems

is described in [l] and [2].

In Section 2 we review the relevant facts about trajectories of differential

equations and define different data structures t o store trajectories. In Sec-

tion 3, we show how these data structures can be used to answer the queries

above. Section 4 contains some concluding remarks. The remainder of this

introduction discusses this work from the viewpoint of extensible databases.

1.2 Extensible Databases

Imagine an extensible relational database supporting the basic data type of

trajectory, as well as the more traditional data types of string, integer, float,

etc. The inclusion of this new data type also requires that new operators be

5

supported, new storage and access methods be developed, and new methods

of optimizing queries be found.

For example, i t is important that the database support the storage and

retrieval of trajectories of an arbitrarily large size. It is also important that

operators defined on the entire trajectory be supported, such as operators

returning various temporal and spatial averages. Our viewpoint is to look

for specific data structures and algorithms to handle the storage, access,

and querying of trajectories. This is not the only viewpoint that has been

proposed.

Another viewpoint is to change the relational model as little as possible

and build a complete extensible DBMS on top of it. For example, Stone-

breaker [14] describes a mechanism for a user to register new abstract data

types into the University version of Ingres. Because of the built-in access

methods used by Ingres, the new data types must occupy a fixed amount

of space. Still another viewpoint is to provide a modular and modifiable

system on top of which extensible databases for specific applications can be

built. The Exodus DBMS described in [7] is an example of such an approach.

See [6] for a recent survey covering some of these issues and detailing other

approaches.

The queries above would not make very much sense for a traditional

relational database. On the other hand, queries such as these are natural

queries for an extensible relational database of trajectories. They are also

typical of the queries found in computational geometry; see [12]. Query 1 is

an example of a nearest neighbor query, while Query 2 is an example of a

fixed-radius near neighbor query. Bentley [4] considers both of the queries

for the case of points in Euclidean space.

It is also important t o understand that while Query 3 does not make

sense in general for spatial curves, i t is meaningful for trajectories of dif-

ferentid equations. Recall that a trajectory of a differential equation is

determined once the initial condition and defining equation are specified;

see [3], for example. This means, in principle, that given any point on the

trajectory, that point together with the defining equation is sufficient to de-

termine the entire trajectory. Alternatively, given a sequence of points on

the trajectory which is sufficient to specify the form of the differential equa-

tion defining the dynamical system, the entire trajectory can be obtained.

It is for these reasons that Query 3 makes sense for trajectories of dynamical

sys tems.

7

Acknowledgements

The author would like to thank Marshall Bern, Diane Greene, John Gilbert,

and George hleyer for many useful discussions.

2 Representatioiis of Paths

2.1 Trajectories

In this section, we recall some basic facts and defintions about trajectories

of differential equations. Let D, = d/dx,. A vectorfield

N
E = apD,

on RN is determined by specifying N functions

a, : RN - R.
We also denote the vector field by E,. In this paper, we will consider only

vector fields with polynomial coefficients; that is, the functions a l , . . . , aN

are all polynomials in 21,. . . , XN. A parameterized path

y : [to, t '] C R - R N

is called a trajectory of the dynamical system

in case i t is the unique solution of the intitial value problem

?(t) = E,(z(t)) , z (tO) = r(t0).

We distinguish between various representations of trajectories.

Spatial Curve Representation. In this representation, the trajectory is

viewed simply as the set of points in RN which comprise it.

Parameterized Path Representation. In this representation, the tra-

jectory is viewed as a map

7 : [tO,t '] c R - RN.

We may pass from the spatial curve representation to the parameter-

ized path representation by parameterizing the curve using arclength.

Vector Field/Reference Point Representation. In this representation,

we identify the trajectory with a pair (E , R) , consisting of a vector

field E and a reference or initial point R, where the trajectory is the

solution of the initial value problem

k (t) = E (z (t)) , ~ (t ') = R.

Note that the Vector Field/Reference Point representation, or VEFREP,

is not unique. Indeed, several different vector fields could have a given spatial

9

curve as a trajectory, while any point along the spatial curve could serve as

the initial value. Even so, as we will see in later sections, this representation

is convenient for query processing.

2.2 Rectifying Trees

In this section, we give an algorithm whose input is a parameterized path

77 : [t O , t l] C R - R N ,

and whose output is a labeled, rooted binary tree. We assume for conveniece

that to = 0 and t' = 1; if not, we can reparameterize. We do not assume

that 7 is a trajectory of the dynamical system (1). This tree will be used in

later sections to define polynomials a l , . . . , U N with the property that 7 is

close t o a trajectory of the dynamical system (1).

To define the tree, we first fix a tolerance E > 0. The tree we define is a

subset of the complete rooted binary tree. The height of a node is defined

to be the length of the unique path connecting the node to the root. The

children of the root have height 1, their children height 2, etc. There are 2k

children of height k: number them left to right from 1 to 2k. We assign two

labels t o the j t h node v from the left a t height k:

10

and

We use the following stopping criterion to grow the tree. If a node has

children TJ and TI’ with labels K and K’, respectively, and if

then the nodes v and v’ are leaves. Here (1 (1 denotes the Euclidean norm.

We denote by T(q) the tree that arises in this fashion. This tree has a simple

interpretation: the 0 labels represent points on the path 17, while the K labels

represent approximate tangent vectors a t those points. The tree is grown

until the difference between two adjacent tangent vectors is uniformly small.

2.3 Trees and Interpolating Vector Fields

In the last section, we associated a tree T(7) t o each path 7 C RN. In

this section, we associate a vector field E(7) to each path using the tree.

The vector field E(7) is simply the vector field with polynomial coefficients

which interpolates the labels (O(v), ~ (T J))

for all leaves TJ in T(7) . Recall that O(v) is the point on the curve 7 corre-

sponding to the node v, and K (T J) is the approximate tangent to the curve

11

a t that point.

Suppose that the tree corresponding to the path 7 has K leaves. Once

we fix a vector space basis of K monomials

the equations (3) define a vector field

N

where u l (x) , . . . , U N (X) are polynomial functions of the form

j = 1

and the by are scalars. The equations (3) reduce to linear equations for the

scalars b;. To write down these equations, let 211,. . . , v~ denote the li' leaves

of the tree T (7) , and K ~ (I I ~) , for i = 1. . . , N denote the N-components of

the vector K (V ~) . Then the system (3) becomes

for p = 1, ..., N .

The number of leaves of the tree T (7) depends very strongly on the

geometry of the path 7. As the complexity of the curve grows, so does

12

L

the degree of the polynomial coefficients of the vector field E(7). For some

applications, i t is better t o impose an upper bound on the degree of the

polynomial coefficients of the vector field E(q) . Let q denote this bound. In

this case, we can define the vector field E(7) by requiring that the coefficients

by minimize the quantity

where the minimum is over vector fields with polynomial coefficients of de-

gree less than or equal to q. See Davis [8] for explicit means of finding the

coefficients b; satisfying these equations.

2.4 Reference Points

Let

77 : [t O , t l] C R - R N

be a parametrized path, T(7) the corresponding tree, and E (7) the asso-

ciated vector field with polynomial coefficients. Consider the trajectory

defined by the initial value problem

i (t) = E,(z(t)), z(0) = q(t0).

Let y denote this trajectory. In general, y is only an approximation to the

path 7. Define R(7) E RN as follows: if the path y and the unit sphere in

13

I

RN intersect, let R(q) denote this intersection; otherwise, let R(q) denote

the closest point between the unit sphere and the trajectory y.

To summarize, given a path 77 C RN, we have defined a rectification

tree T (q) , a vector field E (q) , and a reference point R(q) E RN, with the

property that there is a segment of the trajectory y which approximates the

path q, where y is the solution of the initial value problem

The pair (E(q) ,R (q)) is called the VEFREP representation of the path q.

It is now easy to define an index or invariant associated with the path

q. First, fix injective functions

h, :Rn - {1,2, ...},

for each n = 1,2, . . . Next, view the coefficients of the vector field E (q) as a

K - N vector, so that the pair (E (q) , R (v)) has (K + l)N components. Then

the index associated with 77 is defined by

This can be used to hash the trajectory; see [9].

14

3 Returning the Nearest Trajectory

3.1 Proximity Problems

In this section, we show that the VEFREP representation of a path reduces

Queries 1 and 2 to the following queries:

Query 1’. Given P points in RQ, preprocess the points in time Preprocess(P)

so that given a query point we can determine in time Query(P) the point of

the original set which is closest to i t , using storage Storage(P).

Query 2’. Given P points in RQ, preprocess the points in time Preprocess(P)

so that given a query point we can determine in time Query(P) all points

of the original set which are within a distance of 6’ of i t , using storage

Storage(P) .

Query 1’ is called the nearest neighbor problem, and Query 2’ is called

the fixed radius near neighbor problem. For a general reference to proximity

problems such as these, see [la]. This reference also describes algorithms

to solve these types of problems using techniques which we do not mention

here, such as Voronoi diagrams. The naive exhaustive algorithm requires

Storage(P) = O (P)

Query(P) = O(QP).

15

In [4], Bentley shows, with the assumption of sparsity, how to use a multi-

dimensional divideand-conquer algorithm to achieve bounds

In [5] , Bentley et. al., use a cell method and the assumption of sparsity to

achieve expected bounds of

Preprocess(P) = O (P)

Query(P) = 0(1),

assuming that the original points are drawn independently from a uniform

distribution of a bounded region.

Both of these algorithms have constants which grow exponentially with

the dimension. Because of this, it is doubtful whether either one could lead

to practical algorithms to answer Queries 1 and 2.

3.2 The Algorithm

In this section, we sketch an algorithm to answer Queries 1 - 3. For further

details, see [9].

16

Suppose that 71,. . . , yp are trajectories of the dynamicd system

as a ranges over some parameter space. To each such trajectory y, let

denote i ts VEFREP representation.

trajectories via

We define a norm on the space of

llrll = II(R(r), E(77))IL

where the norm on the right hand side is the standard Euclidean norm.

Given a parameterized path 77, Algorithm 1 below returns from the database

the trajectory y which contains a segment which is closer t o q than any other

segment from any other trajectory in the database. Notice that this provides

an answer to both Query 1 and Query 3. Query 2 is handled in an analogous

manner; again, see [9] for details.

Algorithm 1. The input is a parameterized path q, and the output is the

trajectory y from the database answering Query 1. Fix 6 > 0 and q > 1.

Compute the vector field E of the VEFREP representations (E , R) in the

algorithm using Equation 4.

Step 1. This step is a precomputation. For each trajectory y,, i = 1,. . . , P ,

compute its VEFREP representation (E(yi), R(y;)).

17

Step 2. Given a query path q, computeits VEFREP representation (E (T) , R(q)).

Step 3. Solve the nearest neighbor problem for query point (E(q) ,R(v)) ,

given the set of points

Let (E , R) denote the resulting nearest neighbor

Step 4. Compute the trajectory y which is the solution to the initial value

problem

? (t) = E (z (t)) , ~ (0) = R.

4 Conclusion

In this paper, we have described preliminary work concerned with queries

of databases containing trajectories of differential equations. Our eventual

goal is to build an extensible, relational database supporting these types of

queries.

Trajectories of differential equations have many different representations.

For the types of queries considered here, we have chosen to represent pa-

rameterized trajectories

y : [to, t '] C R - R N

18

.

by a pair, consisting of a vector field E on RN with polynomial coefficients

and a point R E RN such that the trajectory is the solution of the initial

vdue problem:

i (t) = E (z (t)) , z (t o) = R.

We call this a VEFREP representation.

Using the VEFREP representation, we have reduced Query 1 and Query 2

to standard problems in the computational geometry of points in Euclidean

space, the nearest neighbor problem, and the near neighbor problem, re-

spec t i vel y.

Much work remains to be done: the efficiency and implementation of

the algorithm needs to be studied. We do not claim that the algorithm

described here is necessarily the most practical for querying large databases

of trajectories. On the other hand, i t is simple enough that its properties

can easily be understood and investigated. It is our hope that this will lead

to more practical algorithms.

References

[l] H. Abelson and G. J. Sussman, Dynamicists’ Workbench I: “Automatic

Preparation of Numerical Experiments,” R. Grossman (editor), Sym-

19

bolic Computation: Applications to Scientific Computing, SIAM, 1989.

[a] H. Abelson, M. Eisenberg, M. Halfant, J. Katzenelson, E. Sacks, G.

Sussman, J . Wisdom, and K . Yip, “Intelligence i n Scientific Comput-

ing,” Comm. ACM, 32 (1989), 546-562.

[3] V. I. Arnold, Ordinary Differential Equations, MIT, Boston, 1973.

[4] J. L. Bentley, “Multidimensional Divideand-Conquer,” Comm. ACM,

23 (1980), 214-229.

[5] J. L. Bentley, B. W. Weide, and A. C. Y m , “Optimal Expected-Time

Algorithms for Closest Point Problems,’’ ACM Transactions on Math.

Software, 6 (1980), 563-580.

[6] M. J. Carey (editor), “Special Issue on Extensible Database Systems,”

Database Engineering, June, 1987.

[7] M. J. Carey, D. J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J. E.

Richardson, E. J. Shekita, “The Architecture of the EXODUS Extensi-

ble DBMS,” Proceedings of the Object-Oriented Database Workshop,

ACM, 1986, 52-65.

(81 P. Davis, Interpolation and Approximation, Dover, New York, 1975.

20

[9] R. Grossman, “Querying Databases of Trajectories of Differential Equa-

tions: Searching,” in preparation.

[lo] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields, Springer, 1984.

[ll] E. Kishon and H. Wolfson, “3-D Curve Matching,” Courant Institute

of Mathematical Sciences Technical Report 283 (1987).

[12] F. P. Preparata and M. I. Shamos, Computational Geometry: An In-

troduction, Springer, New York, 1985.

[13] J. T. Schwartz and M. Sharir, “Identification of Partially Obscured Ob-

jects in Two Dimensions by Matching of Noisy Characteristic Curves,”

International J. Robotics Research, 6 (1987), 29-44.

[14] M. Stonebreaker, “Inclusion of New Types in Relational Data Base

Systems,” Proceedings of IEEE/Data Engineering, IEEE, 1986, 262-

269.

[15] J. D. Ullman, Principles of Database and Knowledge-Base Systems,

Volume 1, Computer Science Press, Rockville, MD, 1988.

[16] H. Wolfson, “On Curve Matching,” Proceedings of Workshop on Com-

puter Vision, Miami Beach, IEEE, 1987, 307-310.

21

